

Designing for cyclists with the Street Design Manual for Urban Areas in Kenya

September 2020

Promoting equitable and sustainable transport worldwide

Introducing the SDMUAK

STREET DESIGN MANUAL FOR **URBAN AREAS** IN KENYA

MINISTRY OF TRANSPORT, INFRASTRUCTURE HOUSING, URBAN DEVELOPMENT, AND PUBLIC WORKS

PREPARED BY

SUPPORT FROM

Why do we need street design standards?

How people travel

Nairobi

Mombasa

Kisumu

How we usually plan streets

A more equitable approach

COVID-19 response

Pop-up bike lanes & shared streets

Berlin

22 km

Bogota

35 km

Oakland, USA 119 km

Paris

50 km

Barcelona

21 km

How to make it easier to cycle? - Nairobi residents

How to make it easier to cycle? - Kisumu residents

How to make it easier to cycle? - Mombasa <u>residents</u>

Highways & urban streets

Highway

- Focus on uninterrupted vehicle movement at high speeds
- Pedestrians cross on footbridges
- No provision for public transport
- NMT users in the carriageway

Urban street

- Vehicle movement at moderate speeds (up to 50 km/h)
- At-grade pedestrian crossings
- Dedicated lanes for public transport
- Separate space for NMT

SDMUAK contents

- 1. Introduction
- 2. Complete street design principles
- 3. Priority networks
- 4. Street elements
- 5. Street templates
- 6. Intersections
- 7. Design process
- 8. Design checklist

STREET DESIGN MANUAL FOR URBAN AREAS IN KENYA

MINISTRY OF TRANSPORT, INFRASTRUCTURE, HOUSING, URBAN DEVELOPMENT, AND PUBLIC WORKS

Complete street design principles

Designing for safety

Speed management

All modes can share space

Separate footpath needed

Separate footpath & cycle track needed

 Speeds should be managed through physical traffic calming—not just posted speed limits

Efficient use of road space

3-lane carriageway

2 lanes + elevated road

Dedicated lanes for bus rapid transit

Passenger capacity:

3,000 passengers per hour per direction

4,700

Universal access

- Accommodate assistive devices for persons with disabilities
- Persons with disabilities are entitled to reasonable access to places and transport services
- Barrier-free and disabilityfriendly environment to enable people access to buildings, roads, and other social amenities

Gender sensitive design

- Women and men travel differently
- Different expectations from a transport system
- Different perceptions of safety and security
- Improve experience of women and girls while walking, cycling, or using public transport

Modal hierarchy

In order of priority:

- Pedestrians
- Cyclists
- Public transport
- Freight
- Moving cars
- Parked cars

Priority networks

Priority networks

Walking

Public transport

Cycling

Mixed traffic

- Provide access while ensuring safety and efficient movement for walking, cycling, public transport
- Ensure moderate travel speeds
- Complete the network to reduce bottlenecks
- Manage congestion through user fees

Kisumu cycle network plan

Source: Kisumu Sustainable Mobility Plan

Mombasa cycle network plan

Existing cycle tracks in Nairobi

>> Urgent need to create a cycle network plan for Nairobi

Street elements

Street elements

Cycle track design standards

- Positioned between the footpath and carriageway
- Minimum width of 2 m for one-way movement, and 2.5 m for two-way movement
- Elevated +150 mm above the carriageway
- Physically separated from the carriageway—not just paint
- Buffer of 0.5 m next to the carriageway
- For a 2 m cycle track, one bollard in the middle, to allow for cyclists to pass on either side
- Smooth surface material—asphalt or concrete.
 Paver blocks are to be avoided

Cycle track design standards

Cycle tracks & bus stops

Cycle tracks & bus stops

Raised zebra crossing

Nairobi's disappearing tree canopy

Street templates

Guide to the templates

Cross section templates

6 m

Private Properly Footpath Cycle Burler Carmageway Local Blus Stop Cycle Footpath Track

Private Properly Footpath Track

Footpath Track

18 m

18 m

24 m

Intersections

Intersection design principles

- Ideal junctions are compact & rectilinear
- Reduce vehicle speeds at points of conflict
- Minimise crossing distances
- Assume drivers are distracted
- 3-6 m typical corner radius, max 8 m
- Centerline turning radius of WB-15 (largest truck to be accommodated in city) is 12.5 m.
 No need for larger radii

Protected intersection design to improve cyclist safety

Cycle access at roundabouts

Design process

Street design process

Stakeholder consultations

Data collection

- Existing plans and policies: Check existing city, town and County plans
- NMT facility audit: Footpath and cycle track presence and condition, pedestrian crossing, shade, street furniture
- NMT user counts: Pedestrian & cycle volumes
- Parking survey: Parking supply, occupancy & turnover
- Street vending: Type of structure, type of goods sold, relationship with government
- Street lighting survey: presence and performance of street lights
- Public transport: Saccos, routes, bus stops
- Taxis (boda bodas, tuk tuks): stops, shelter, numbers
- Topographic survey

Transformations

Ongoing projects should incorporate cycle facilities

Nairobi Expressway

Kiambu Rd

Upper Hill flyover project

Magadi Rd

Mombasa-Malindi Rd

Thank you

africa@itdp.org

f o in itdpafrica

